Investigadores del Instituto Fraunhofer de Mecánica de los Materiales (IWMH) han creado un azulejo orgánico innovador, que posee una mayor eficiencia que los cerámicos en lo que se refiere a recursos y permite desarrollar nuevos diseños creativos.
El aislamiento de los edificios permite conservar el calor en el interior y el frío fuera durante el invierno, justo al contrario que en verano. Un edificio con un aislamiento adecuado permite ahorrar dinero en la factura de la calefacción al evitar que escape el calor y por tanto, no sea necesario tener la caldera encendida tanto tiempo para mantener la misma temperatura. Para muchos hasta ahí llega el conocimiento que poseen sobre el aislamiento de edificios.
En consonancia con la estrategia europea destinada a reducir el consumo energético primario anual en un 20% para 2020, el Instituto Fraunhofer de Mecánica de los Materiales ha creado un azulejo con mayor eficiencia que los cerámicos, y que permite desarrollar nuevos diseños. Los bioplásticos compuestos por ácido poliláctico (PLA) son cada vez más resistentes al calor y ya se pueden emplear en procesos de relleno a alta temperatura también en la industria de la alimentación.
Pero, ¿qué convierte a estos azulejos en un producto biológico? Los azulejos están compuestos de una mezcla epoxi de aceite de linaza, distintas fibras naturales y una tierra de diatomeas, un material procedente de diatomeas fosilizadas. Los sistemas de azulejos basados en medios biológicos, como los diseñados por el IWMH (Alemania), son más respetuosos con el medio ambiente, más ligeros y, en función de las propiedades de los materiales empleados en su fabricación y las del propio proceso de fabricación, más eficientes desde el punto de vista de los recursos y la energía que los materiales cerámicos convencionales. “El compuesto no es tan duro como el vidrio ni quebradizo como los epoxi convencionales, sino flexible y maleable. Estas características permiten que sea más fácil trabajar con ellos”, según explicó Andreas Krombholz, científico de la división de compuestos naturales del IWMH, en relación a las ventajas adicionales de este material. Permite además adoptar nuevos enfoques arquitectónicos. Durante el proceso de moldeo se les puede dar la forma que precise el cliente.
También se les puede dotar de color y formas a voluntad. Otra ventaja que ofrecen desde el punto de vista del diseño es la posibilidad de añadir pigmentos fluorescentes a la mezcla, generando azulejos emisores de luz. Esto implica que pueden utilizarse tanto en interiores como en exteriores, a modo de guía iluminada en suelos y muros. Los mismos bioazulejos pueden instalarse en cocinas y baños y utilizarse para alicatar suelos. Además, permiten ahorrar dinero tanto al productor como a los consumidores, debido a que los azulejos tienen la capacidad de amortiguar el ruido por sí mismos y por tanto se elimina un paso del proceso de producción.
Bioplásticos
Además, la industria del embalaje utiliza cada vez más los biopolímeros fabricados con PLA como una alternativa respetuosa con el medio ambiente al plástico derivado del petróleo. Estos materiales se obtienen a partir del almidón del maíz y son completamente biodegradables. Hasta ahora, los PLA comenzaban a perder rigidez a los sesenta grados centígrados, característica que impedía su utilización en procesos que se llevan a cabo a temperaturas altas. Ahora, un equipo de investigadores del Instituto Fraunhofer de Investigación Aplicada sobre Polímeros (IAP) ha descubierto una forma de lograr que este bioplástico aumente su resistencia al calor. Se ha encontrado una aplicación interesante en la industria de la alimentación, concretamente en el proceso de llenado de los vasos de yogur, que se realiza a temperaturas elevadas. Si se fabrican con complejos PLA estéreo, los vasos mantienen su forma y permanecen estables incluso a temperaturas que alcanzan los ciento veinte grados centígrados. El Dr. Johannes Ganster, director de división en IAP, explicó el principio en el que se basa esta tecnología: “Para lograr que los plásticos PLA sean más estables a temperaturas elevadas introdujimos complejos estéreo con componentes especiales de lactidas L y D. Estas moléculas que rotan a izquierda y a derecha se complementan mutuamente y logran que los enlaces sean aún más estables.”
Distintas empresas grandes han manifestado su interés en la tecnología debido a su enorme potencial. La producción de biopolímeros compuestos de PLA no se ve afectada por la cada vez mayor escasez de petróleo. Además se pueden convertir en compost y resultan ideales para su reciclaje por descomposición en ácido láctico. La mayor ventaja que presentan es el ser tan duraderos y sólidos como cualquier otro plástico derivado del petróleo e incluso pueden utilizarse para fabricar distintos productos como películas protectoras, carcasas de ordenadores y bolsas de la compra, lo que permite dar un paso más hacia la bioeconomía sostenible que busca Europa.
Fuente: ambientum.com
¡Necesitas ser un miembro de AGRO 2.0 para añadir comentarios!
Participar en AGRO 2.0